skip to main content


Search for: All records

Creators/Authors contains: "Wu, Jie"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available October 16, 2024
  2. Effectively integrating knowledge into end-to-end task-oriented dialog systems remains a challenge. It typically requires incorporation of an external knowledge base (KB) and capture of the intrinsic semantics of the dialog history. Recent research shows promising results by using Sequence-to-Sequence models, Memory Networks, and even Graph Convolutional Networks. However, current state-of-the-art models are less effective at integrating dialog history and KB into task-oriented dialog systems in the following ways: 1. The KB representation is not fully context-aware. The dynamic interaction between the dialog history and KB is seldom explored. 2. Both the sequential and structural information in the dialog history can contribute to capturing the dialog semantics, but they are not studied concurrently. In this paper, we propose a novel Graph Memory Network (GMN) based Seq2Seq model, GraphMemDialog, to effectively learn the inherent structural information hidden in dialog history, and to model the dynamic interaction between dialog history and KBs. We adopt a modified graph attention network to learn the rich structural representation of the dialog history, whereas the context-aware representation of KB entities are learnt by our novel GMN. To fully exploit this dynamic interaction, we design a learnable memory controller coupled with external KB entity memories to recurrently incorporate dialog history context into KB entities through a multi-hop reasoning mechanism. Experiments on three public datasets show that our GraphMemDialog model achieves state-of-the-art performance and outperforms strong baselines by a large margin, especially on datatests with more complicated KB information. 
    more » « less
  3. Abstract

    Multimodal single-cell sequencing technologies provide unprecedented information on cellular heterogeneity from multiple layers of genomic readouts. However, joint analysis of two modalities without properly handling the noise often leads to overfitting of one modality by the other and worse clustering results than vanilla single-modality analysis. How to efficiently utilize the extra information from single cell multi-omics to delineate cell states and identify meaningful signal remains as a significant computational challenge. In this work, we propose a deep learning framework, named SAILERX, for efficient, robust, and flexible analysis of multi-modal single-cell data. SAILERX consists of a variational autoencoder with invariant representation learning to correct technical noises from sequencing process, and a multimodal data alignment mechanism to integrate information from different modalities. Instead of performing hard alignment by projecting both modalities to a shared latent space, SAILERX encourages the local structures of two modalities measured by pairwise similarities to be similar. This strategy is more robust against overfitting of noises, which facilitates various downstream analysis such as clustering, imputation, and marker gene detection. Furthermore, the invariant representation learning part enables SAILERX to perform integrative analysis on both multi- and single-modal datasets, making it an applicable and scalable tool for more general scenarios.

     
    more » « less